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Abstract:  Near infrared sensor-based pre-concentrated copper ores were characterized quantitatively and qualitatively for 

mineralogical and chemical composition using optical microscopy and mineralogical methods (QEMSCAN®, X-

ray diffraction (XRD), scanning electron microscopy (SEM) and geochemical methods (X-ray fluorescence 

spectrometer (PXRF) and Inductively Coupled Plasma Mass Spectrometry (ICP-MS).The investigation was carried 

out towards understanding the satisfactory copper recovery methods based on copper grade. The analysis was done 

according to the ore category: product, middling and waste. Result obtained showed that the ore contained different 

minerals and metals in variable concentration according to the ore categories. Chrysocolla was determined to be 

the dominant copper ore mineral. The elemental concentration of the metals indicated a different pattern which is 

attributed to the increase in surface area and the analytical technique used. However, a strong correlation between 

the different analytical techniques was found. This suggests good correlation in the method of analysis. This work 

revealed the potentials of the application of an automated technique of ore pre-concentration for processing of ore 

minerals on the basis of mineralogical and chemical content. 
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Introduction 

Copper, in various forms, has been mined from the Earth ever 

since mankind started using metal tools. Today, rich copper 

deposits are scarce and deposits of native copper (pure copper 

metal) are very rare (Baba et al., 2013). Most ores mined 

today contained copper in complex assembly of minerals; 

with the ore matrix made up of compounds that contain less 

than 1% copper (Amos et al., 2020). This Complex copper ore 

minerals are increasingly expensive to process and require 

detailed analysis of the ore component to establish the most 

viable techniques and methods for recovering copper (Amos 

et al., 2017; Amos et al., 2020). The ore analysis is usually 

focused on the evaluation of mineralogy and associated 

gangue present in order to mitigate unwanted processing cost 

(Neighbour, 2010). This is because mining of the ore at times 

does not pose much problem unlike the processing to obtain 

copper and other valuable metals which could be complicated 

due to the complex nature of the ores (Oscar et al., 2019). In 

recent times several strategies and approach that will lead to 

efficient recovery of minerals from the ore matrix are usually 

adopted. The key objective is the discrimination of unwanted 

materials and gangue through pre-concentration before 

subjecting the ore to further processing (Iyakwari and Glass, 

2016; Amos et al., 2020). Understanding the mineralogical 

and chemical composition and properties of such ores is 

important in determining its processing method (Liu et al., 

2010; Biswas and Davenport, 2013; Iyakwari et al., 2016; 

Whiteman et al., 2016). The analysis may require liberation of 

the mineral from its host rock before subjecting such to 

different methods of instrumental technique. While it is well 

known that the mineralogy and texture of ore rock could 

influence its mineral processing behavior (Neighbour, 2010), 

method for the quantified measurement and characterization 

of mineralogical and chemical constituent can be used to 

predict variability in the composition which in turn results in 

effective mineral processing (Helle et al., 2005; Neighbour, 

2010; Anderson, et al., 2009; Kalichini et al., 2017). An 

absolute, dependable method of quantitative analysis is 

important in order to effectively determine the composition of 

the ore (Little, 2018). Various methods, which include 

chemical, physical and mineralogical have been used 

(Anderson et al., 2009). It has been shown that no single 

method is sufficient due to susceptibility of the instrument to 

factors such as detection limit which may vitiate the results 

(Queralt, 2005). In most cases a combination of different 

methods of analyses are adopted (Helaluddin, 2016). For 

instance, X-ray Diffraction has been found to be effective 

method of quantitative determination of copper ores due to its 

ability to detect the minerals and chemical combination 

present in the ores (Queralt, 2005; Reed, 2005; Zhou et al., 

2018). The QEMSCAN® instrument has been effectively 

deployed for rapid mineralogical assessment, including the 

spatial mapping of minerals (Gottlieb et al., 2000; Pirrie and 

Rollinson, 2011). Scanning electron microscopes commonly 

have an X-ray spectrometer attached, enabling the 

characteristic X-rays of a selected element to be used to 

produce an image. The advantages of the SEM as an imaging 

instrument (high spatial resolution, large depth of field, and 

simple specimen preparation) make it an invaluable tool in 

determining the mineralogy of an ore. X-ray fluorescence 

(XRF) analysis has been a standard method of elemental 

analysis in geology for a long time and offers good accuracy 

for major elements and detection limits in the region of 1 ppm 

(Reed, 2005; El-Taher, 2012). 

Sensor-based technique for ore sorting is now popular and is 

gaining acceptance in mineral processing; it is a method of ore 

pre-concentration where singular particles are individually 

analysed and mechanically separated based on physical 

properties after determining these properties by a sensor 

(Pirrie and Rollinson, 2011; Dalm et al., 2014). The 

technology has a lot of potentials in the mining industry 

because it can be applied on relatively coarse ore particles, 

beside that it allows for the incorporation of the technique as a 

pre-concentration step in ore processing operations (Sabins, 

1999; Wotruba and Riedel, 2005). The application of this 

technique is aimed at eliminating waste or sub-economic 

material prior to the conventional concentrating methods 

(Dalm et al., 2014). Different sensor types that are currently 

used with sensor based sorting include optical, near infrared, 

X-ray transmission and electromagnetic sensors. 

The near-infrared (NIR) sensor has been proven to be a 

valuable tool in mapping the distribution of mineral 

alterations in hydrothermal ore deposits and in pre-

concentrating porphyry Cu ores deposits (Salter and Wyatt, 

1991; Sabins, 1999; Thompson et al., 1999; Wotruba et al., 

2009). The use of the technology in ore sorting operation is 

becoming famous due to dwindling ore resources and its 

versatility and application in mineral processing. The 
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principal attractiveness of the technique isits direct and non-

invasive nature, as the main driving force towards efficient 

and sustainable ore pre-concentration. The technique can be 

used for quantitative application targeted at determining major 

constituents in ore samples and for some specific applications 

under favorable characteristics of the sample matrix. Also, for 

qualitative application for identification and classification of 

samples by assigning each spectrum in the spectral set used 

for training the identification/classification algorithm 

attributed to a given class of ores (Celio, 2003). 

In this current study, complex copper ore samples of 

hydrothermal origin were pre-concentrated using near infrared 

sensor based technique and the ore classified into three 

different categories based on copper grade. The ore fractions 

were further characterized for mineralogical variation and 

chemical content across different ore category using different 

technique to establish effective copper processing and to 

improve the understanding of the elemental distribution in the 

ores. 

 

Materials and Methods 

Copper ore samples were obtained from Montverde mine 

operations in Los pozos mining district in the coastal Range of 

the Atacama Region, Northern Chile. A total of 32 samples 

(size between 5 and 10 cm) were considered for pre-

concentration (Amos et al., 2020) and mineralogical/chemical 

characterization. For particle size fraction analysis, the 

classified ore particles were crushed separately with a Retsch 

steel jaw crusher (to -3 mm), milled, homogenised and then 

sieved to obtained the following size fractions: -125/+90, -

90/+63 and -63/+45 μm. 

Ore pre-concentration 

The ore was pre-concentrated using Near InfraRed (NIR) 

sensor-based technique in Camborne School of Mines, 

University of Exeter, United Kingdom. The NIR line scanner 

at Camborne School of Mines (CSM) measures each spectrum 

at a dimension of 0.29 by 0.9 cm. Each sample was an average 

of between 2 and 2.7 cm. In order to properly map each 

sample, individual samples were divided into three sectors 

measuring 0.9 cm each, corresponding to NIR spectrum 

height, with width measuring 0.29 cm (Fig. 1). The number of 

spectra produced by individual samples per sector depended 

on particle size and shape. The NIR pre-concentration strategy 

employed is aimed at eliminating both calcite and clay 

(muscovite/kaolinite) rich particles as gangue. Hence, samples 

were classified as product, middling or waste based on the 

amount of copper content according to the method described 

by (Iyakwari et al., 2016; Amos et al., 2020). It should be 

noted that the NIR examine minerals based on their functional 

group(s), in this case (calcite, ankerite, malachite, muscovite, 

kaolinite, biotite, chrysocolla, malachite, chlorite, tourmaline 

and apatite) minerals were determined. 

 

 
Fig. 1: Samples marked for directional scanning and 

spectra/mineral mapping (after Iyakwari et al., 2016) 

 

Samples NIR spectral correlation and interpretation 
The NIR strategy employed was targeted at eliminating both 

calcite and clay (muscovite/kaolinite) rich particles as gangue 

(Iyakwari et al., 2016). Hence, samples were classified into 

three groups as:  

i.  Product - the samples with all NIR spectra showing 

chrysocolla and or hematite, chlorite, biotite pattern. This 

group includes featureless NIR spectra. 

ii.  Waste - the samples with all NIR spectra showing calcite 

and or muscovite characteristic spectra.  

iii.  Middling – the samples with NIR spectra containing 

individual spectra of both waste and product groups. This 

is likely since individual mineral grains are smaller than 

the pixel size of 2.9 by 9 mm, and particles scanned 

consisted of at least two pixels (which may be distinct). 

This group may require further liberation to a size not 

less than the pixel size and rescanned.  

Individual sample NIR spectra mapping 

Three representative samples from each class (Figs. 2, 3 and 

4) representing products, middling and waste respectively are 

described here in detail. Major absorption features, absorption 

wavelength position, correlation with reference spectra, and 

the possible mineral(s) responsible for the absorption features 

are correlated with mineral data and field scan images.  

Product sample generated a total of 22 NIR spectra, 

corresponding to 8, 8, and 6 spectra per sector scanned (Fig. 

2(a, b and c)). Spectra display no absorption feature(s). 

A total of 26 spectra were generated from scan of middling 

sample (Fig. 3(a, b and c)). Spectra of sectors A and B 

displayed no features, while spectra of sector C shows strong 

mineralogical variation with spectrum number 1, 2, 3, and 4 

showing no absorption features, while spectrum number 5, 6, 

7, 8 and 9 all showed features near 1410, and 2200 nm. The 

features displaying spectra also exhibited relatively higher 

reflectance compared to those without features. The position 

of features near 1410 and 2200 nm corresponds to muscovite 

features (Iyakwari et al., 2013; Iyakwari, 2014; Iyakwari et 

al., 2016). The featureless spectra correspond to hematite 

dominated spectra. Muscovite displays diagnostic absorption 

features in spectrum number 5, 6, 7, 8, and 9. This indicates 

that muscovite is concentrated more around those spectra. 

This is confirmed by the sample NIR-active minerals field 

scan image (Fig. 3d). The sample field scan image also 

reveals that the sample has a porphyritic texture, showing a 

highly zoned concentration of hematite with patches of 

muscovite to the lower left of the image. 
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Fig. 2: (sectors a, b and c) –NIR spectra of product sample While d is the QEMSCAN® fieldscan image of sample at 10 

µm X-ray resolution, showing only NIR active minerals present in the sample 

 

 
Fig. 3: (sectors a, b and c) –NIR spectra of middling sample. While d is the QEMSCAN® fieldscan image of sample at 10 

µm X-ray resolution, showing only NIR active minerals present in the sample 
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Fig. 4: (sectors a, b and c) NIR spectra of waste sample. While d is the QEMSCAN® fieldscan image of sample at 10 µm 

X-ray resolution, showing only NIR active minerals present in the sample 
 

 

Spectra of waste sample (Fig. 4 (a, b and c)), display 

characteristic muscovite and calcite features near 1415, 2210 

and 2345 nm.  Spectra also display high reflectance, which is 

indicative of absence or low hematite concentration in the 

sample. A total of 22 spectra were generated from the scan 

corresponding to 7, 8 and 7 spectra per sector (Amos et al., 

2020). 

NIR-active minerals field scan image of sample (Fig. 4d) 

show both calcite and muscovite occurring almost in same 

space and time. 

Mineralogical analysis 

The mineralogical analysis of the pre-concentrated copper ore 

(product, middling and waste) was carried out with 

QEMSCAN® 4300 system, which is based on a Zeiss 

scanning electron microscope.   

A Siemens Bruker D500 XRD analyser (www.bruker.com) 

with a detection limit of 5% was used to semi-quantitatively 

measure the mineralogical composition of the ore. Samples to 

be determined were prepared as epoxy resin mounts with 

Epofix resin and polished to a 1 μm finish before carbon 

coating. Each sample, having an average size of between 2 

and 2.7 cm, was mapped using the field scan measurement 

mode in order to obtain a full image of the sample being 

measured. XRD measurements were matched with known 

mineral signatures using Bruker EVA software. The patterns 

generated by the XRD scan were smoothed before interpreted 

using the JCPDS PDF-2 (2004) database. 

Chemical/textural analysis 

Elemental composition of the classified ore samples was 

measured using portable desktop thermo scientific Niton FXL 

950 FM X-Ray Fluorescence analyser (XRF, 

www.nitonuk.co.uk). The portable XRF (PXRF) analyser 

employs Energy Dispersive Spectrometry (EDX) method. The 

measuring window covers a diameter of 8 mm, and X-rays 

penetrates approximately 1 to 2 mm into the sample.  

Scanning Electron Microscope (SEM) was used to observe 

ore characteristics such as texture, size and liberation sizes in 

relation to copper. Polished blocks of-63/+45 μm samples 

were coated with carbon to improve imagery and enhance 

surface conductivity. The SEM equipment used for the 

analyses was a JEOL JSM-5300LV Low Vacuum SEM 

equipped with EDS ISIS software.  

The metal grades of the pre-concentrated and classified ore 

were determined with Inductively Coupled Mass 

Spectroscopy (ICP-MS, Agilent Technology, Model 7700). 

Samples were first digested by dissolving the fractions in 

Aqua regia (75% 6N HCl and 25% 15.8N HNO3) at 90 ˚C for 

1 h. 50 times dilution of leachate was carried out with 50% 

HNO3 prior to determination with ICP-MS. Experimental 

results obtained revealed that the ICP-MS produces very good 

precision with variability of 1.2% between sample batches 

with a maximum standard deviation of 0.1% for the metals 

determined. The outline flowchart for the analysis is shown in 

Figure. 

 

Results and Discussion 

Quantitative and qualitative analyses were carried out 

according to the instrumental techniques described in Fig. 5. 

Data obtained from the analysis showed contrasting results. 

X-ray diffraction analysis of the mineralogical composition of 

the pre-concentrated ore indicated the presence of some major 

minerals which include: quartz, hematite, clinochlore 
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(chlorite), orthoclase and microcline (K-feldspar), muscovite, 

calcite and biotite as the eight dominant crystalline mineral 

constituents. The XRD pattern for the product, middling and 

waste classified ore are shown in Figs. 6, 7 and 8. The figures 

exemplified typical profiles of the pre-concentrated ore 

obtained. The observed rise in baseline confirms the presence 

of the amorphous mineral (chrysocolla), which is in line with 

(Gaydon, 2011; Iyakwari, 2014) on rise of baseline of XRD 

pattern with increase in the 2-theta value suggesting the 

presence of chrysocolla as the dominant amorphous mineral in 

an ore. 

 

 

 
Fig. 5: Outline strategy of ore pre-concentration and mineralogical/chemical analysis 

 

 

 

 
Fig. 6: XRD profile of bulk product sample 
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Fig. 7: XRD profile of bulk middling sample 

 

 
Fig. 8: XRD profile of bulk waste sample 

 

XRD detection limit is 5%, the technique cannot be used to 

determine trace minerals in the ore. Because of this 

QEMCAN® was used to identify much wider range of minor 

minerals that are below the detection limit of the XRD 

equipment. Mineralogical analysis by this instrument revealed 

that the ore contained different minerals (Table 1).  

 

Table 1: Minerals present in the classified ore  

No. 
List of 

minerals 
Chemical formula 

1 Chrysocolla (Cu, Al)2H2Si2O5(OH)4.n(H2O) 

2 Cuprite Cu2O 
3 Malachite Cu2(CO3)(OH)2 

4 Biotite K(Mg,Fe)3(AlSi3O10)(F,OH)2 

5 Ankerite Ca(Fe,Mg,Mn)(CO3)2 
6 Hematite Fe2O3 

7 Calcite CaCO3 

8 Muscovite KAl2(Si3Al)O10(OH,F)2 
9 Kaolinite Al2O3 2SiO2·2H2O 

10 Chlorite (Mg,Fe)3(Si,Al4O10(OH)2·(Mg,Fe)3(OH)6 

11 Quartz SiO2 
12 Plagioclase  (Na,Ca)(Si,Al)4O8 

13 K-feldspars KAlSi3O8 

14 Tourmaline NaFe3+
3(Al4Mg2)Si6O18(BO3)3(OH)3O 

15 Apatite  Ca5(PO4)3(OH,F,Cl) 

 

QEMSCAN® modal mineral data showed that, of the three 

copper-bearing minerals present, chrysocolla constitutes about 

94.4 wt. % and malachite and cuprite 5.3 wt. % and 0.4 wt. %, 

respectively. Other associated minerals are present at variable 

concentration. The minerals containing iron are hematite, 

ilmenite, biotite and ankerite with hematite and biotite been 

the most common in the pre-concentrated and classified ore. 

The cumulative mineral data of each ore category (product, 

middling and waste) is presented in Table 2. The result in the 

Table is a reflection of the total concentration of each mineral 

in the classified ore. Cumulative values (wt. %) obtained infer 

that the concentration of copper is product > middling > 

waste. 

The pattern of some mineral concentration (chrysocolla and 

K-feldspar) followed a systematic order from product to 

middling to waste. The inverse pattern, where the waste 

ranked higher than the middling and product, was observed 

for muscovite, and ankerite. 

A different pattern, where the waste, middling or product 

ranked high in certain minerals was observed for kaolinite, 

biotite, tourmaline, chlorite, plagioclase, cuprite, malachite, 

calcite, quartz and apatite. Amongst all the minerals, apart 

from chrysocolla, the cumulative values of muscovite, biotite, 

chlorite, quartz, K-feldspar, hematite, and calcite were well 

above 1.3 wt. % in the pre-concentrated ore samples. 

However, K-feldspar, chlorite, quartz, and hematite all have 

significantly higher values than the rest of the minerals in the 

ore.  

Scanning Electron Microscopy (SEM) was used to 

characterize the ores samples. The elemental composition of 

the ore was determined in each case. The instrument was 

alsoused to observe the ore characteristics such as texture, 

size, shape and liberation sizes in relation to copper. It was 

found that the Cu is interlocked with other metals in the ore 

matrix (Fig. 9). Results obtained for the pre-concentrated ore 

samples were similar where copper particles in the crushed 

ore are finely disseminated; the ore is morphologically 

characterized by intergrowth with chrysocolla minerals 
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hosting copper particles residing within the hematite rich iron 

source and K-feldspars. This was also observed from the 

QEMSCAN® images shown in Figs. 2 – 4. The only 

difference between the three classes of the ore was in the 

concentration of elements as shown in Table 3. The observed 

phenomenon could be due to absorption of elements by 

chrysocolla as shown in the spatial variability within the 

crushed ore with copper ubiquitously distributed within the 

crushed grain matrix containing chrysocolla, K-feldspar and 

hematite.  

It should be noted that for the waste, abundant peaks of some 

elements (Fe, Mg, Si) that correlates with results in Table 2 

for the corresponding minerals hosting them was observed. 

For the middling very abundant peaks of Fe with short peaks 

of Cu peak were obtained with corresponding elements (Al, 

Si, K, Ca), while for the product polished blocks the Cu peak 

was very pronounced compared to the former. Although, the 

Fe peaks were more pronounced, the observed peak heights 

were not like that in the middling. In all the samples 

investigated the observed peaks appear to correlate with their 

mineralogical concentrations according to the classification. 

The SEM image in Fig. 9 revealed typical distribution of 

minerals within the ore matrix with copper in close 

association with hematite and K-feldspars finely disseminated 

in the ore. 

 

 
Fig. 9: BEI SEM image of polished block. [a] Cu, 

Al)2H2Si2O5(OH)4.n(H2O, [b] Fe2O3, [c] KAlSi3O8, [d] SiO2 

 

 

 

Table 2: Cumulative mineral data for product, middling and waste samples (wt. %) 

N
IR

 C
la

ss
if

ic
a

ti
o
n

 

Silicates Oxides Carbonates Phosphates 

Others  

(Trace 

phases) 

Tot

al 

Cu-

bearing 
Non-Cu-bearing Cu-bearing Non-Cu-bearing 

Non-Iron-bearing Iron-bearing Non-Iron-bearing 
Iron-

bearing 
Non-Iron-bearing 

Iron-

bearing 

Non-Iron-

bearing 

Chry-

socolla 

Musco-

vite 

Kao-

linite 

Bio-

tite 

Tour-

maline 

Chlo-

rite 

Quar

tz 

K-

feldspar 

Plag- 

feldspar 
Hem-atite 

Cup-

rite 

Mala-

chite 

Calci

te 
Ankerite Apatite 

Produc

ts 7.95 2.86 0.08 9.36 0.32 9.36 14.77 23.20 0.17 28.58 0.02 0.32 1.91 0.34 0.20 0.57 100 

Mid-

dlings 4.36 3.07 0.49 5.10 0.73 6.14 14.71 15.75 0.31 47.35 0.00 0.00 1.30 0.52 0.00 0.20 100 

Waste 0.68 3.75 0.01 7.33 0.45 21.54 34.85 14.35 1.07 1.65 0.01 0.15 11.49 0.62 0.35 1.70 100 

 

 

Table 3: Metals and metal oxides analysis of pre-concentrated ore (product and middling) with SEM (wt. %) 

Metal concentration ↓ 

Sample category→ 
Product Middling 

Metal Oxides↓ 

Category → 
Product Middling 

Na 0.13 0.13 Na2O 0.18 0.18 

Mg 0.60 0.10 Mg2O 0.99 0.17 

Al 0.21 0.12 Al2O3 0.40 0.23 

Si 12.10 12.22 SiO3 26.1 26.14 

K 6.18 0.26 K2O 7.45 0.31 

Ca 1.71 0.71 CaO 2.39 0.99 

Fe 40.0 48.11 Fe2O3 57.19 68.78 

Cu 4.23 4.01 CuO 5.30 3.20 

 

The relative abundance’s of elements in the samples were 

determined from their metal oxides (Table 3). In each case the 

determination was carried out in triplicate and averages taken. 

The values obtained are only qualitative and are based on 

standard-less analysis, and in each case the values normalized 

to equal 100%. The determination is based on elements 

requested on a point location and identified by the SEM. As 

such the possibility of other elements occurring in appreciable 

amount which could be measured cannot be ruled out. 

A correlation plot (Fig. 10) for the metal oxides investigated 

by SEM showed a slight variation in the concentration 

between the two ore categories determined. This suggests a 

good correlation of analysis as indicated by the difference in 

mineralogical composition as a result of the sensor-based 

sorting of the ore. 

 

 
Fig. 10: Correlation plots of metal oxides obtained with 

SEM 
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PXRF qualitative analysis of pre-concentrated ore (Table 4) 

indicated that the NIR-sensor-based sorting and classification 

produce fractions with characteristic metal concentrations. It 

was found that the copper grade increases sharply according 

to the classification from waste to middling to product. With 

calcium, the inverse trend was observed: the waste fractions 

contain the highest calcium concentration while the product 

fraction contained the lowest calcium. The grades of all the 

selected elements follow a different pattern. With iron, the 

metal dominated the middling fraction with ranged 

concentration of (49.1 to 55.6% concentration) which is 

higher than the product fraction (32.9 to 42.2% concentration) 

which, in turn, is greater than the waste fractions. This pattern 

is also observed for nickel and cobalt. The inverse pattern, 

where the middling ranked lowest and the waste grade is 

highest, occurs for manganese, barium, potassium, silicon, 

titanium, and the residue fractions. With phosphorus, the 

product and middling grades are similar with a higher waste 

grade. The opposite is true for vanadium and chromium. In 

terms of elemental grade in the different size fractions, it was 

observed that in the product size fractions, an increase in 

copper concentration with increasing particle size was the 

case (from −63+45 µm to −180+125 µm). The same was 

observed for both the middling and waste fractions. The 

opposite trend applies to iron, potassium and the residue 

fractions in the product size fractions.  

The trend of increasing iron grade with decreasing particle 

size is also observed in the middling and waste fractions. Of 

particular importance is the concentration of calcium and 

silicon as the major constituent of the minerals. The 

concentration of these metals expectedly, is higher in the 

middling and waste categories, which signifies a difference in 

metal grade of copper. Therefore, it is observed that there is a 

positive correlation between elemental concentration and host 

minerals. For instance, the concentration of copper, iron and 

calcium is a reflection of their abundances in the following 

minerals: Cu (chrysocolla, malachite and cuprite), Fe 

(hematite and chlorite) and Ca (feldspars, calcite and 

ankerite). This pattern is a clear indication that the mineralogy 

of the ores has influence in determining the outcome of the 

ore behaviour. 

 

 

Table 4: PXRF Qualitative analysis of sensor-base pre-concentrated ore (Wt. %) 
Sample 

Category 

Particle size 

Range (µm) 
Cu Ni Co Fe Mn Ba Cr V Ti Ca K Al P Si Residue 

Product −180+125 1.83 0.02 0.02 32.9 0.06 0.05 0.04 0.04 0.26 0.23 2.21 2.1 0.28 7.9 51.9 
−125+90 1.82 0.01 0.03 36.2 0.05 0.05 0.04 0.04 0.26 0.22 2.12 2.3 0.27 7.9 48.5 

−90+63 1.73 0.01 0.03 38.2 0.05 0.03 0.04 0.04 0.27 0.24 2.05 2.2 0.27 7.8 46.9 

−63+45 1.56 0.01 0.04 42.2 0.05 0.02 0.04 0.04 0.25 0.25 1.81 2.1 0.27 7.5 43.7 
Middling −180+125 0.36 0.02 0.02 49.1 0.00 0.03 0.04 0.04 0.09 1.68 1.01 1.5 0.27 5.3 40.1 

−125+90 0.33 0.03 0.05 52.8 0.00 0.02 0.04 0.04 0.08 1.60 0.93 1.5 0.26 5.1 37.1 

−90+63 0.34 0.03 0.06 53.3 0.00 0.02 0.04 0.04 0.09 1.61 0.90 1.5 0.27 5.0 36.6 

−63+45 0.32 0.04 0.06 55.6 0.11 0.03 0.04 0.04 0.09 1.55 0.82 1.6 0.26 4.8 34.7 

Waste −180+125 0.07 0.03 0.00 8.10 0.14 0.09 0.02 0.02 0.27 4.66 3.74 2.3 0.36 11.0 68.8 

−125+90 0.07 0.00 0.00 8.20 0.13 0.10 0.02 0.03 0.27 5.25 3.83 2.2 0.38 10.0 68.4 
−90+63 0.07 0.00 0.00 9.20 0.13 0.09 0.02 0.03 0.28 5.94 3.76 2.1 0.38 10.0 67.2 

−63+45 0.07 0.00 0.00 10.0 0.13 0.09 0.02 0.03 0.30 6.12 3.86 2.3 0.39 10.0 65.9 

 

The ICP-MS was used to determine some metals (copper, 

zinc, manganese, cobalt and nickel), Table 5. With ICP-MS it 

was found that, the copper grade increases sharply with a 

decrease in particle sizes (–45 to –125+90 μm) in the product 

and middling. This is to be expected due to increase in surface 

area with decreasing particle sizes. This suggests that the 

higher specific area of finer particles makes these more 

amenable for dissolution due to effective interaction with 

chemicals for reactions to occur. The same trend of increasing 

metal concentration with decreasing particle fraction was 

observed using the ICP-MS. With manganese, nickel, cobalt 

and zinc, the concentration is lower than that observed in the 

product. Iron was not analysed using this technique due to its 

significant concentrations in the classified ore as determined 

by other methods analysis. Concentration of Fe in the ore is 

above the range limit of the ICP-MS, thus in each case the 

determination would require huge dilutions which cannot be 

accurately equated in relation to the concentration of the other 

metals. 

 

Table 5: Metal grades determined with ICP-MS  

Sample  

category 

Particle size  

range (µm) 

Cu  

(wt. %) 

Zn  

(ppm) 

Mn  

(ppm) 

Co  

(ppm) 

Ni 

(ppm) 

Product −125+90 1.04 0.01 0.04 0.00 0.00 

 −90+63 1.70 0.01 0.05 0.00 0.00 
 −63+45 1.79 0.02 0.06 0.03 0.01 

 −45 1.97 0.02 0.06 0.03 0.01 
Middling −125+90 0.70 0.01 0.01 0.01 0.00 

 −90+63 0.72 0.02 0.02 0.01 0.00 

 −63+45 1.01 0.02 0.02 0.03 0.02 
 −45 1.10 0.02 0.03 0.04 0.02 

 

The ICP-MS reveals that the pattern of metal concentration 

was consistent across the entire size fraction. The observation 

could be due to aqua regia digestion before ICP-MS 

determination which releases the metals locked up in the 

complex ore matrix. This will serve as a guide toward 

establishing a relationship between particle size fractions and 

metal concentration in ores.   

 

Conclusion 

The mineralogical and chemical analysis of sensor-base pre-

concentrated copper ores was carried out. It was found that all 

the results obtained correlated indicating good correlation of 

analyses. The mineralogy of the ore by QEMSCAN® and 

XRD shows that the copper ore samples consisted of different 

minerals which are broadly divided into for classes as silicate, 

oxide, phosphate, carbonate and oxide. The three main 

copper-bearing minerals in the ore are chrysocolla, malachite 

and cuprite. Chrysocolla was determined to be the major 

copper-bearing mineral and the bulk ore is a silicate oxide. 

SEM analysis of the classified ore indicated that copper is 

finely disseminated in the ore. The ore mineral chemistry also 

revealed a positive correlation suggesting good ore analysis. 

PXRF results of size fractions indicated higher content of 

metals compared to particle samples: This is an indication that 

liberation of the classified ore led to exposure of the ore for 

effective determination. Results of the metals determined by 

the PXRF quantitative technique of size fractions and aqua 

regia digestion, followed by ICP-MS metal determination 

showed that both instruments in some cases either 

overestimated or underestimated the concentrations of the 

metals. This suggests that the concentration of metals in 

copper ores cannot be effectively determined using one 
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particular technique. The observation could be caused by the 

differences in the methods of sample preparation and or 

measurement. In general, the results of the investigation are in 

accordance with the classification thus corroborating the pre-

concentration strategy adopted. The result of this investigation 

suggests the potential of the application of the sensor base 

sorting technique for copper pre-concentration of the ore 

samples obtained from the mine locations. 
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